Fast methods for the Eikonal and related Hamilton- Jacobi equations on unstructured meshes.

نویسندگان

  • J A Sethian
  • A Vladimirsky
چکیده

The Fast Marching Method is a numerical algorithm for solving the Eikonal equation on a rectangular orthogonal mesh in O(M log M) steps, where M is the total number of grid points. The scheme relies on an upwind finite difference approximation to the gradient and a resulting causality relationship that lends itself to a Dijkstra-like programming approach. In this paper, we discuss several extensions to this technique, including higher order versions on unstructured meshes in Rn and on manifolds and connections to more general static Hamilton-Jacobi equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Sweeping Method for Static Convex Hamilton-Jacobi Equations

We develop a fast sweeping method for static Hamilton-Jacobi equations with convex Hamiltonians. Local solvers and fast sweeping strategies apply to structured and unstructured meshes. With causality correctly enforced during sweepings numerical evidence indicates that the fast sweeping method converges in a finite number of iterations independent of mesh size. Numerical examples validate both ...

متن کامل

A Paraxial Formulation for the Viscosity Solution of Quasi-P Eikonal Equations

Stationary quasi-P eikonal equations, stationary Hamilton-Jacobi equations, arise from the asymptotic approximation of anisotropic wave propagation. A paraxial formulation of the quasi-P eikonal equation results in a paraxial quasi-P eikonal equation, an evolution Hamilton-Jacobi equation in a preferred direction, which provides a fast and efficient way for computing viscosity solutions of quas...

متن کامل

A second order discontinuous Galerkin fast sweeping method for Eikonal equations

In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng and C.-W. Shu, A discontinuous Galerkin finite element method for directly solving ...

متن کامل

Two Semi-Lagrangian Fast Methods for Hamilton-Jacobi-Bellman Equations

In this paper we apply the Fast Iterative Method (FIM) for solving general Hamilton–Jacobi–Bellman (HJB) equations and we compare the results with an accelerated version of the Fast Sweeping Method (FSM). We find that FIM can be indeed used to solve HJB equations with no relevant modifications with respect to the original algorithm proposed for the eikonal equation, and that it overcomes FSM in...

متن کامل

A limiting strategy for the back and forth error compensation and correction method for solving advection equations

We further study the properties of the back and forth error compensation and correction (BFECC) method for advection equations such as those related to the level set method and for solving Hamilton-Jacobi equations on unstructured meshes. In particular, we develop a new limiting strategy which requires another backward advection in time so that overshoots/undershoots on the new time level get e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 11  شماره 

صفحات  -

تاریخ انتشار 2000